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Lattice Approach to Wigner-Type Theorems

Georges Chevalier1

The Wigner’s Theorem states that a bijective transformation of the set of all one-
dimensional linear subspaces of a complex Hilbert space which preserves orthogonality
is induced by either a unitary or an anti-unitary operator. There exist many Wigner-type
theorems, in particular in indefinite metric spaces, von Neumanns algebras and Banach
spaces and we try to find a common origin of all these results by using properties
of the lattice subspaces of certain topological vector spaces. We prove a Wigner-type
theorem for a pair of dual spaces which allows us to obtain, as particular cases, the
usual Wigner’s Theorem and some of its generalizations.
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1. INTRODUCTION

If H is a complex Hilbert space and S a bijective transformation of the set of
all one-dimensional linear subspaces of H which preserves angles between any
pair of such subspaces then the Wigner’s Theorem states that S is induced by either
a unitary or an anti-unitary operator on H . If dim H ≥ 3, U. Uhlhorn improved
this result in Uhlhorn (1963) by requiring that S only preserves the orthogonality
between the one-dimensional subspaces also called lines in the sequel.

There exist in the literature many generalizations of the Wigner’s Theorem,
in particular to indefinite metric spaces (Bracci et al., 1975; Molnár, 2002), von
Neumann algebras (Molnár, 2000), complex Banach spaces (Molnár, 2002), pro-
jections of rank one in Banach spaces (Molnár, 2002) and it seems interesting to
find a common origin for all these results. In the present paper, we search the roots
of the Wigner’s Theorem in a result of Chevalier (2004) which describes automor-
phisms of the lattice of all closed subspaces of certain topological vector spaces
by means of bicontinuous bijections. This result generalizes the First Fundamental
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Theorem of projective geometry related to the automorphisms of the lattice of all
subspaces of a vector space.

If we replace the Hilbert space H by a topological vector space E over a field
K , a first problem is to define an orthogonality relation on the set of all lines of E.
In general, orthogonality relations on a lattice of subspaces are defined by means of
non-degenerate bilinear forms and generally no natural bilinear form is available
on E × E. On the other hand, let E∗ be the algebraic dual space of E formed
by all the linear functionals on E. There always exists a natural non-degenerate
bilinear form on E × E∗, namely the mapping B : E × E∗ → K defined by

B(x, y) = y(x), x ∈ E, y ∈ E∗.

Since E is a topological space, closed subspaces seem more convenient than
general subspaces and this condition forces to replace E∗ by E′, the topological
dual of E formed by all continuous linear functionals on E. But now, the restriction
of the bilinear form B to E × E′ is not necessarily non-degenerate and that leads to
consider only pairs (E,E′) which are pairs of dual spaces in the sense of Mackey
(1945) or Dieudonné (1942).

If (E,F ) is a pair of dual spaces then the lattice of all closed spaces of E is
an irreducible complete DAC-lattice and such lattices appear as the natural setting
of the lattice part of this work. In the first section, we will specify the definitions
and the main properties of pairs of dual spaces and DAC-lattices.

Section 2 is devoted to the lattice tools necessary to a generalization of the
Wigner’s Theorem and in Section 3 Wigner-type theorem is proved in the setting
of a pair of dual spaces (E,F ) but, in this new version of the theorem, one line is
a line of E and the other is a line of F .

As a consequence of the main result of Section 3, Wigner-type theorems
for real locally convex spaces and for complex normed spaces are established in
Section 4. If H is a Hilbert space, the identification of H and its topological dual
allows one to find again the original Wigner’s Theorem.

Information about the lattice concepts used in this paper may be found in
Maeda (1970) and Köthe (1969) is a good reference for topological vector spaces.

In the whole of the paper, the dimensions of all the vector spaces are not less
than 3 and the heights of all the lattices are not less than 4.

2. DAC-LATTICES AND PAIRS OF DUAL SPACES

2.1. Definitions and Main Properties

An AC-lattice is an atomistic lattice with the covering property: if p is an
atom and a ∧ p = 0 then a <· a ∨ p, that is a ≤ x ≤ a ∨ p implies a = x or
a ∨ p = x. In general, At(L) will denote the set of all atoms of a lattice L and if
L∗ is the dual lattice of L then At(L∗) is also the set of all coatoms of L.
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If L and its dual lattice L∗ are AC-lattices, L is called a DAC-lattice (Maeda,
1970). Irreducible complete DAC-lattices of heights ≥ 4 are representable by
lattices of closed subspaces and many lattices of subspaces are DAC-lattices. We
will now specify this last assertion.

Let K be a field, E a left vector space over K , F a right vector space over K . If
there exists a non-degenerate bilinear formB on E × F , we say that (E,F ) is a pair
of dual spaces. Since the form is non-degenerate, F can be interpreted as a subspace
of the algebraic dual E∗ of E and E as a subspace of F ∗. This interpretation allows
one to write, for any x ∈ E and any y ∈ F , x(y) = y(x) = B(x, y).

For example, if E is a locally convex space and E′ its topological dual space
then (E,E′) is naturally a pair of dual spaces with B(x, y) = y(x) (Köthe, 1969,
p. 234).

For a subspace A of E, we put

A⊥ = {y ∈ F | B(x, y) = 0 for every x ∈ A}.
Similarly, let

B⊥ = {x ∈ E | B(x, y) = 0 for every y ∈ B}
for every subspace B of F . A subspace A of E is called F -closed if A = A⊥⊥ and
the set of all F -closed subspaces, denoted by LF (E) and ordered by set-inclusion,
is a complete irreducible DAC-lattice (Maeda, 1970, Theorem 33.4). Conversely,
for any irreducible complete DAC-lattice L of height ≥ 4, there exists a pair (E,F )
of dual spaces such that L is isomorphic to the lattice of all F -closed subspaces
of E (Maeda, 1970, Theorem 33.7, Köthe 1969, Section 10.3).

The set LE(F ) of all E-closed subspaces of F is similarly defined and is also
a DAC-lattice. The two DAC-lattices LF (E) and LE(F ) are dual isomorphic by
the mapping A → A⊥ (Maeda, 1970, Theorem 33.4) and an element X of LF (E)
and an element Y of LE(F ) are said to be orthogonal if X ⊂ Y⊥ (Equivalently,
Y ⊂ X⊥) and we write X ⊥ Y .

Let (E,F ) be a pair of dual spaces. The linear weak topology on E, denoted
by σ (E,F ), is the linear topology defined by taking {G⊥ | G ⊂ F, dim G < ∞}
as a basis of neighbourhoods of 0. If F is interpreted as a subspace of the algebraic
dual of E then a sub-basis of neighbourhoods of 0 consists of kernels of elements
of F .

The linear weak topology on F , noted σ (F,E), is defined in the same way.
The space F can be interpreted as the topological dual of E for the σ (E,F )
topology and E as the topological dual of F for the σ (F,E) topology. Equipped
with their linear weak topologies, E and F are topological vector spaces (Köthe,
1969, Section 10.3) if the topology on K is discrete.

Moreover, for a subspace G ⊂ E, we have G = G⊥⊥ and thus to be a closed
subspace in E is an unambiguous notion. If K = R or C, this result generalizes
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to any pair (E,F ) and any locally convex topology over E when F is the dual of
E for this topology (Köthe, 1969, Section 20.3).

2.2. The Adjoint of a Semi-Linear Map

Let (E,F ) be a pair of dual spaces and f : E → E a τ -linear mapping, that
is a group homomorphism satisfying f (λx) = τ (λ)f (x) where λ ∈ K , x ∈ E and
τ is an automorphism of K .

If y is an element of E∗ then the mapping x ∈ E → τ−1(y(f (x))) belongs
to E∗ since

τ−1(y(f (x + x ′))) = τ−1(y(f (x))) + τ−1(y(f (x ′)))

and, for any λ ∈ K ,

τ−1(y(f (λx))) = τ−1(y(τ (λ)f (x))) = τ−1(τ (λ)y(f (x))) = λτ−1(y(f (x))).

Let us define f ∗ : E∗ → E∗ by f ∗(y)(x) = τ−1(y(f (x))) for any y ∈ E∗ and
any x ∈ E. For y, y ′ ∈ E∗ and λ ∈ K , we have f ∗(y + y ′) = f ∗(y) + f ∗(y ′), and

f ∗(yλ)(x) = τ−1[(yλ)(f (x))] = τ−1[y(f (x))λ]

= τ−1(y(f (x)))τ−1(λ) = f ∗(y)(x)τ−1(λ)

and so f ∗(yλ) = f ∗(y)τ−1(λ). The mapping f ∗ is τ−1-linear and will be called
the adjoint of f .

Assume that f is weakly continuous. If y ∈ F ⊂ E∗ then the mapping x ∈
E → τ−1(y(f (x))) is weakly continuous and therefore f ∗(y) ∈ F . We will prove
that the restriction of f ∗ to F is weakly continuous.

Let x ∈ E = F ′, x = 0. As x and f (x) can be identified to continuous linear
functionals on F , we can write, for any y ∈ F ,

y ∈ ker f (x) ⇔ (f (x))(y) = 0 ⇔ y(f (x)) = 0 ⇔ τ−1(y(f (x))) = 0

⇔ (f ∗(y))(x) = 0 ⇔ f ∗(y) ∈ ker x

and therefore, f ∗(ker f (x)) ⊂ ker x. Thus, for any element U = ker x of a
sub-basis of neighbourhoods of 0 ∈ F = E′ there exists a neighbourhhood
V = ker f (x) of 0 ∈ F such that f ∗(V ) ⊂ U . The mapping f ∗ is weakly contin-
uous at 0 and consequently, since f ∗ is a homomorphism of topological groups,
it is weakly continuous on F .

In what follows, if f : E → E is a weakly continuous τ -linear mapping then
f ∗ will always mean the restriction of f ∗ to F ⊂ E∗ and thus f ∗∗ is a mapping
from E to E.

Now let us consider a closed subspace X of E. For any x ∈ X and any
y ∈ F , y(f (x)) = 0 is equivalent to f ∗(y)(x) = 0 and so, as for linear mappings,
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f ∗−1(X⊥) = f (X)⊥ for any X ∈ LF (E). Others results about adjoints are: f ∗∗ =
f for a weakly continuous semi-linear mapping and f ∗−1 = f −1∗ if f is a weakly
continuous semi-linear bijection with a weakly continuous inverse. A proof of the
second claim is as follows.

If for y1, y2 ∈ F , f ∗(y1) = f ∗(y2) then for any x ∈ E, f ∗(y1)(x) = f ∗(y2)(x)
and, since τ is an automorphism, y1(f (x)) = y2(f (x)). Since f is onto, y1 = y2

and f ∗ is one-to-one.
Now let z ∈ F . Define y ∈ F by y(x) = τ (z(f −1(x))). For x ∈ E, we have :

f ∗(y)(x) = τ−1(y(f (x))) = τ−1(τ (z(f −1(f (x))))) = z(x).

Thus, f ∗(y) = z and f ∗ is onto. The mapping f ∗ is bijective and we will prove
that f −1∗ = f ∗−1.

For x ∈ E and y ∈ F , we have :

f ∗(f −1∗(y))(x) = τ−1((f −1∗(y))(f (x))) = τ−1(τ (y(f −1(f (x))))) = y(x).

Therefore, f ∗(f −1∗(y)) = y holds. Similarly,

f −1∗((f ∗(y))(x) = τ (f ∗(y))(f −1(x))) = τ (τ−1(y(f (f −1(x))))) = y(x).

Hence, f −1∗(f ∗(y)) = y and the proof is complete.

3. THE LATTICE TOOLS FOR A LATTICE APPROACH
TO THE WIGNER’S THEOREM

Proposition 1. Let L be a complete DAC-lattice. If f is an automorphism of the
poset At(L) ∪ At(L∗) then f extends to an automorphism φ of the lattice L.

Proof: Clearly, f is a bijection of At(L) and a bijection of At(L∗).
Let

∨

i∈I

pi and
∨

j∈J

qj be two joins of atoms of L. We will prove that

∨

i∈I

pi ≤
∨

j∈J

qj ⇔
∨

i∈I

f (pi) ≤
∨

j∈J

f (qj ).

Assume
∨

i∈I

pi ≤
∨

j∈J

qj and let P = f (Q) a coatom of L. We have :

∨

j∈J

f (qj ) ≤ P = f (Q) ⇔ ∀j ∈ J, f (qj ) ≤ f (Q)

⇔ ∀j ∈ J, qj ≤ Q

⇔
∨

j∈J

qj ≤ Q
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⇒
∨

i∈I

pi ≤ Q

⇔ ∀i ∈ I, pi ≤ Q

⇔ ∀i ∈ I, f (pi) ≤ f (Q) = P

⇔
∨

i∈I

f (pi) ≤ P,

and thus
∨

i∈I

f (pi) ≤
∨

j∈J

f (qj ).

Now, assume
∨

i∈I

f (pi) ≤
∨

j∈J

f (qj ). Since f −1 is also an automorphism of

At(L) ∪ At(L∗) we have, by the previous part of the proof,
∨

i∈I

pi ≤
∨

j∈J

qj .

In particular,
∨

i∈I

pi =
∨

j∈J

qj ⇔
∨

i∈I

f (pi) =
∨

j∈J

f (qj )

and so we can define an extension φ of f to L by

φ(x) =
∨

i∈I

f (pi)

if 0 = x =
∨

i∈I

pi and φ(0) = 0. The mapping φ is an automorphism of the lattice

L which extends f . �

The following result generalizes the First Fundamental Theorem of projective
geometry (Baer, 1952) to lattices of closed subspaces.

Proposition 2. Let (E1, F1) and (E2, F2) be two pairs of dual spaces over the
fields K1 and K2. If there exists an isomorphism ψ of the lattice LF1 (E1) onto
the lattice LF2 (E2) then K1 and K2 are isomorphic fields and there exists a
bicontinuous semi-linear bijection s : E1 �→ E2 such that, for every F1-closed
subspace M of E1, ψ(M) = s(M). If a bicontinuous τ -linear bijection s and a
bicontinuous τ ′-linear bijection s ′ generate the same automorphism ψ then there
exists k ∈ K2 such that τ ′ = kτk−1 and s ′ = ks.

Proof: The first part of the proposition is proved in Chevalier (2004,
Proposition 3) and the second part needs a proof only if E1 is infinite dimen-
sional.
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Assume that s and s ′ generate ψ and let M be a subspace of E1 such that
3 ≤ dim M < ∞. We have ψ(M) = s(M) = s ′(M) and by the First Fundamental
Theorem of projective geometry, there exists k ∈ K2 such that, for any x ∈ M ,
s ′(x) = ks(x) and τ ′ = kτk−1. Let y ∈ E1/M and N = M ⊕ K1y. There exists
k′ ∈ K2 such that, for any x ∈ N , s ′(x) = k′s(x). If 0 = x ∈ M then 0 = s(x) =
ks ′(x) = k′s ′(x) and thus k = k′. Therefore, s ′(y) = ks(y) and s ′ = ks. �

4. WIGNER-TYPE THEOREMS

Proposition 3. (A Wigner-type theorem for DAC-lattices) Let L be an irreducible
complete DAC-lattice and f an automorphism of the poset At(L) ∪ At(L∗). If L

is representable as the lattice LF (E) of all F -closed subspaces of a pair of dual
spaces (E,F ) then f extends to an automorphism φ of LF (E) and there exists
a bicontinuous semi-linear bijection s : E → E such that φ(M) = s(M) for all
M ∈ LF (E).

Proof: Use Propositions (1) and (2).

Remark. Let L be the lattice of all subspaces of a vector space E. If f is an
automorphism of At(L) ∪ At(L∗) (roughly speaking, f preserves in both direc-
tions inclusion of lines in hyperplanes) then f extends to an automorphism � of
L and there exists a semi-linear bijection s : E → E such that, for any subspace
X, f (X) = s(X).

Let (E,F ) be a pair of dual spaces. If f : At(LF (E)) ∪ At(LE(F )) →
At(LF (E)) ∪ At(LE(F )) is at the same time a bijection of At(LF (E)) and a bi-
jection of At(LE(F )) such that, for any p ∈ At(LF (E)) and any q ∈ At(LE(F )),

p ⊥ q ⇔ f (p) ⊥ f (q)

then f is called a Wigner bijection over (E,F ). �

Proposition 4. (A Wigner-type theorem for a pair of dual spaces) Let f be a
Wigner bijection over a pair (E,F ) of dual spaces. There exists a bicontinuous
semi-linear bijection s : E → E such that:

1. for any p ∈ At(LF (E)), f (p) = s(p),
2. for any q ∈ At(LE(F )), f (q) = s∗−1(q).

Proof: As M ∈ LF (E) → M⊥ ∈ LE(F ) is an anti-isomorphism of lattices,
we can define a bijection f1 of At(LF (E)∗) by f1(P ) = f (P ⊥)⊥ for any
P ∈ At(LF (E)∗). Let g be the extension of f1 to At(LF (E)) ∪ At(LF (E)∗) which
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agrees with f on At(LF (E)). If p ∈ At(LF (E)) and P ∈ At(LF (E)∗), we have
p ≤ P if and only if p ⊥ P ⊥ which is also equivalent to f (p) ⊥ f (P ⊥) = g(P )⊥

that is g(p) ≤ g(P ).
By Proposition (1), g extends to an automorphism G of the lattice LF (E) and

by using Proposition (3) there exists a bicontinuous semi-linear bijection s such
that, for every F -closed subspace M , G(M) = s(M). In particular, for every atom
p of LF (E), s(p) = G(p) = g(p) = f (p).

Let q ∈ At(LE(F )). We have :

s∗−1(q) = s(q⊥)⊥ = f1(q⊥)⊥ = f (q). �

Remark. The correspondences G : X ∈ LF (E) → s(X) ∈ LF (E) and H : Y ∈
LE(F ) → s∗−1(X) ∈ LE(F ) are automorphisms of the DAC-lattices LF (E) and
LE(F ). The pair (G,H ) preserves orthogonality of closed subspaces :

X ∈ LF (E) ⊥ Y ∈ LE(F ) ⇔ G(X) ⊥ H (Y ).

Moreover, for any X ∈ LF (E), G(X) = H (X⊥)⊥.

5. EXAMPLES

A linear mapping f , defined on a locally convex space E over K = R or C

is weakly continuous if and only if f is continuous with respect to the linear weak
topology σ (E,E′) (Köthe, 1969, 20.4). If K = R then a semi-linear mapping is
linear since the identity is the only automorphism of R and we have the following
version of the Wigner’s Theorem.

Corollary 1. Let E be a real locally convex space and E′ its dual. If f is a Wigner
bijection over the dual pair (E,E′) then there exists a weakly bicontinuous linear
bijection s : E → E such that

• for any p ∈ At(LE′(E)), f (p) = s(p),
• for any q ∈ At(LE(E′)), f (q) = s∗−1(q).

If E is metrizable then s is continuous.

For the last claim of this corollary, we have used the fact that weakly contin-
uous linear mappings between metrizable spaces are continuous (Schaefer, 1966,
Chapter IV, 3.4 and 7.4).

If K = C then the automorphism τ associated to the semi-linear bijection s

of Proposition (4) can be not continuous (in a locally convex space over a field K ,
the topology on K is not the discrete one but is defined by means of the modulus)
and an extra hypothesis seems necessary to obtain a Wigner’s Theorem close to
the classical one.
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Corollary 2. Let E be an infinite-dimensional complex normed space and f a
Wigner bijection over the dual pair (E,E′). There exists a linear bijection or a
conjugate linear bijection s : E → E which is bicontinuous for the norm topology
and such that:

• for any p ∈ At(LE′(E)), f (p) = s(p),
• for any q ∈ At(LE(E′), f (q) = s∗−1(q).

Proof: Let s be the semi-linear bijection obtained by using Proposition (4).
Since s is continuous for the weak linear topology, s carries orthogonally closed
hyperplanes to orthogonally closed hyperplanes (Chevalier, 2004, Proposition 3).
But orthogonally closed subspaces of E agree with topologically closed subspaces
(Köthe, 1969, Section 20, 3 (2)) and by using a result of Kakutani (1946) or
Fillmore et al. (1984), Lemma 2, s is either linear or conjugate linear. A linear
mapping on a metrizable space E is continuous if and only if this mapping is
continuous for the linear weak topology σ (E,E′) and the generalization of this
result to a conjugate linear mapping is easy. Thus, s is continuous and by, using a
similar proof, s−1 is also continuous. �

Remark. In Molnár 2002, L. Molnár proved the same result for complex Banach
spaces.

The following corollary is the classical Wigner’s Theorem and here its interest
is only its proof which uses the previous results and specially the Wigner-type
theorem for pairs of dual spaces.

Corollary 3. Let H be a Hilbert space over K = R or C and f a bijection of
the set of all lines of H such that

p ⊥ q ⇔ f (p) ⊥ f (q).

The mapping f extends to an automorphism φ of the orthomodular lattice of
all closed subspaces of H and there exists a weakly bicontinuous semi-linear
mapping r : H → H such that r∗ = r−1 and, for any closed subspace M of H ,
r(M) = φ(M). Moreover :

1. if K = R then r is a unitary operator,
2. If K = C and H infinite dimensional, then r is either a unitary or an

anti-unitary operator.

Proof: Since H is a Hilbert space, the correspondence which associates to
y ∈ H the continuous functional λy : x → 〈x, y〉 is an anti-isomorphism of H

onto its dual. This anti-isomorphism allows one to identify the lattice of all closed
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subspaces of H and the lattice of all closed subspaces of its dual and to extends
f to a Wigner bijection on the dual pair (H,H ). Let s : H → H be the semi-
linear bijection obtained by using Proposition (4). For any closed subspace X of
H , we have s(X) = s∗−1(X). Citing Proposition (2), there exists λ ∈ K such that
s = λs∗−1. We have ss∗ = λ1C and therefore λ > 0. If r = (1)/(

√
λ)s then r and

s generate the same automorphism φ of the lattice of all closed subspaces of H

and r−1 = r∗.
By using the general relation r∗−1(X⊥) = r(X)⊥ and r∗−1 = r , φ(X⊥) =

φ(X)⊥ holds and φ is an automorphism of the orthomodular lattice of all closed
subspaces of H .

1) If K = R then, by Corollary 1, r is linear and bicontinuous for the norm
topology. Since r−1 = r∗, r is a unitary operator.

2) If = C, then by Corollary 2, r is linear or conjugate linear, bicontinuous
for the norm topology and r−1 = r∗ implies that r is a unitary operator.

�

Remark. If H is a finite dimensional complex Hilbert space of dimension not
less than 3 then the mapping r is also a unitary or an anti-unitary operator but
we don’t know a short proof using the results of this paper. For a proof in the
more general setting of an indefinite inner product space, see Molnár (2002),
Corollary 2.

6. CONCLUDING QUESTIONS

(1) In Molnár (2002), the author proved a Wigner-type theorem in the context
of an indefinite inner product space. Does Proposition (4) allows one to
obtain a short proof of this result?

(2) There exist Wigner-type theorems for projections (Molnár, 2002;
Chevalier, 2004b). Since projections (i.e. bounded linear idempotent oper-
ators) defined on a Hilbert space does not form a DAC-lattice but an atom-
istic orthomodular poset, does there exist a result similar to Proposition (2)
for this kind of poset?
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